cma.utilities.python3for2.abc.MutableMapping
cma.utilities.utils.DerivedDictBase
- for conveniently adding methods/functionality to a dictionary.cma.utilities.utils.SolutionDict
- dictionary with computation of an hash key.cma.evolution_strategy._CMASolutionDict_functional
- No class docstring; 0/2 instance variable, 1/2 method documentedcollections.defaultdict
cma.utilities.utils.DataDict
- a dictionary of lists (of data)collections.deque
cma.constraints_handler.DequeCDF
- a queue with (in case) element-wise cdf computation.collections.namedtuple('CMAEvolutionStrategyResult', ['xbest', 'fbest',
'evals_best', 'evaluations', 'iterations', 'xfavorite', 'stds', 'stop'])
cma.evolution_strategy.CMAEvolutionStrategyResult
- A results tuple from CMAEvolutionStrategy
property result.dict
cma.evolution_strategy._CMASolutionDict_empty
- a hack to get most code examples runningcma.evolution_strategy._CMAStopDict
- keep and update a termination condition dictionary.cma.options_parameters.CMAOptions
- a dictionary with the available options and their default values for class CMAEvolutionStrategy
.cma.utilities.utils.DictClass
- A class wrapped over dict
to use class .-notation.cma.utilities.utils.DictFromTagsInString
- read from a string or file all key-value pairs within all <python>...</python> tags and return a dict
.list
cma.constraints_handler.LoggerList
- list of loggers with plot methodcma.fitness_transformations.ComposedFunction
- compose an arbitrary number of functions.cma.fitness_transformations.FBoundTransform
- shortcut for ComposedFunction([f, BoundTransform(bounds).transform]), see also below.cma.fitness_transformations.FixVariables
- Insert variables with given values, thereby reducing the dimensionality of the resulting composed function.cma.fitness_transformations.IntegerMixedFunction
- DEPRECATED compose fitness function with some integer variables using np.floor
by default.cma.fitness_transformations.IntegerMixedFunction2
- compose fitness function with some integer variables using np.round
by default.cma.fitness_transformations.Rotated
- return a rotated version of a function for testing purpose.cma.fitness_transformations.ScaleCoordinates
- compose a (fitness) function with a preceding scaling and offset.cma.fitness_transformations.Shifted
- compose a function with a shift in x-space.cma.purecma.SquareMatrix
- rudimental square matrix classcma.purecma.DecomposingPositiveMatrix
- Symmetric matrix maintaining its own eigendecomposition.cma.recombination_weights.RecombinationWeights
- a list of decreasing (recombination) weight values.cma.utilities.utils.ExclusionListOfVectors
- For delayed selective mirrored samplingcma.utilities.utils.ListOfCallables
- A list
of callables that can be called like a single callable
.cma.utilities.utils.MoreToWrite
- make sure that this list does not grow unboundedobject
cma.bbobbenchmarks.AbstractTestFunction
- Abstract class for test functions.cma.bbobbenchmarks.BBOBFunction
- Abstract class of BBOB test functions.cma.bbobbenchmarks._F8F2
- Abstract F8F2 sum of Griewank-Rosenbrock 2-D blockscma.bbobbenchmarks.F125
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with Gauss noisecma.bbobbenchmarks.F126
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with uniform noisecma.bbobbenchmarks.F127
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with seldom Cauchy noisecma.bbobbenchmarks.F19
- F8F2 sum of Griewank-Rosenbrock 2-D blocks, noise-freecma.bbobbenchmarks._FDiffPow
- Abstract Sum of different powers, between x^2 and x^6.cma.bbobbenchmarks.F119
- Sum of different powers with Gauss noise, between x^2 and x^6cma.bbobbenchmarks.F120
- Sum of different powers with uniform noise, between x^2 and x^6cma.bbobbenchmarks.F121
- Sum of different powers with seldom Cauchy noise, between x^2 and x^6cma.bbobbenchmarks.F14
- Sum of different powers, between x^2 and x^6, noise-freecma.bbobbenchmarks._FEllipsoid
- Abstract Ellipsoid with monotone transformation.cma.bbobbenchmarks.F10
- Ellipsoid with monotone transformation, condition 1e6cma.bbobbenchmarks.F116
- Ellipsoid with Gauss noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks.F117
- Ellipsoid with uniform noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks.F118
- Ellipsoid with Cauchy noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks._FGallagher
- Abstract Gallagher with nhighpeaks Gaussian peaks, condition up to 1000, one global rotationcma.bbobbenchmarks.F128
- Gallagher with 101 Gaussian peaks with Gauss noise, condition up to 1000, one global rotationcma.bbobbenchmarks.F129
- Gallagher with 101 Gaussian peaks with uniform noise, condition up to 1000, one global rotationcma.bbobbenchmarks.F130
- Gallagher with 101 Gaussian peaks with seldom Cauchy noise, condition up to 1000, one global rotationcma.bbobbenchmarks.F21
- Gallagher with 101 Gaussian peaks, condition up to 1000, one global rotation, noise-freecma.bbobbenchmarks.F22
- Gallagher with 21 Gaussian peaks, condition up to 1000, one global rotationcma.bbobbenchmarks._FRosenbrock
- Abstract Rosenbrock, non-rotatedcma.bbobbenchmarks.F104
- Rosenbrock non-rotated with moderate Gauss noisecma.bbobbenchmarks.F105
- Rosenbrock non-rotated with moderate uniform noisecma.bbobbenchmarks.F106
- Rosenbrock non-rotated with moderate Cauchy noisecma.bbobbenchmarks.F110
- Rosenbrock non-rotated with Gauss noisecma.bbobbenchmarks.F111
- Rosenbrock non-rotated with uniform noisecma.bbobbenchmarks.F112
- Rosenbrock non-rotated with Cauchy noisecma.bbobbenchmarks.F8
- Rosenbrock noise-freecma.bbobbenchmarks._FSchaffersF7
- Abstract Schaffers F7 with asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F122
- Schaffers F7 with Gauss noise, with asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F123
- Schaffers F7 with uniform noise, asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F124
- Schaffers F7 with seldom Cauchy noise, asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F17
- Schaffers F7 with asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F18
- Schaffers F7 with asymmetric non-linear transformation, condition 1000cma.bbobbenchmarks._FSphere
- Abstract Sphere function.cma.bbobbenchmarks.F1
- Noise-free Sphere functioncma.bbobbenchmarks.F101
- Sphere with moderate Gauss noisecma.bbobbenchmarks.F102
- Sphere with moderate uniform noisecma.bbobbenchmarks.F103
- Sphere with moderate Cauchy noisecma.bbobbenchmarks.F107
- Sphere with Gauss noisecma.bbobbenchmarks.F108
- Sphere with uniform noisecma.bbobbenchmarks.F109
- Sphere with Cauchy noisecma.bbobbenchmarks._FStepEllipsoid
- Abstract Step-ellipsoid, condition 100cma.bbobbenchmarks.F113
- Step-ellipsoid with gauss noise, condition 100cma.bbobbenchmarks.F114
- Step-ellipsoid with uniform noise, condition 100cma.bbobbenchmarks.F115
- Step-ellipsoid with Cauchy noise, condition 100cma.bbobbenchmarks.F7
- Step-ellipsoid, condition 100, noise-freecma.bbobbenchmarks.BBOBCauchyFunction
- Class of the Cauchy noise functions of BBOB.cma.bbobbenchmarks.F103
- Sphere with moderate Cauchy noisecma.bbobbenchmarks.F106
- Rosenbrock non-rotated with moderate Cauchy noisecma.bbobbenchmarks.F109
- Sphere with Cauchy noisecma.bbobbenchmarks.F112
- Rosenbrock non-rotated with Cauchy noisecma.bbobbenchmarks.F115
- Step-ellipsoid with Cauchy noise, condition 100cma.bbobbenchmarks.F118
- Ellipsoid with Cauchy noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks.F121
- Sum of different powers with seldom Cauchy noise, between x^2 and x^6cma.bbobbenchmarks.F124
- Schaffers F7 with seldom Cauchy noise, asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F127
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with seldom Cauchy noisecma.bbobbenchmarks.F130
- Gallagher with 101 Gaussian peaks with seldom Cauchy noise, condition up to 1000, one global rotationcma.bbobbenchmarks.BBOBGaussFunction
- Class of the Gauss noise functions of BBOB.cma.bbobbenchmarks.F101
- Sphere with moderate Gauss noisecma.bbobbenchmarks.F104
- Rosenbrock non-rotated with moderate Gauss noisecma.bbobbenchmarks.F107
- Sphere with Gauss noisecma.bbobbenchmarks.F110
- Rosenbrock non-rotated with Gauss noisecma.bbobbenchmarks.F113
- Step-ellipsoid with gauss noise, condition 100cma.bbobbenchmarks.F116
- Ellipsoid with Gauss noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks.F119
- Sum of different powers with Gauss noise, between x^2 and x^6cma.bbobbenchmarks.F122
- Schaffers F7 with Gauss noise, with asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F125
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with Gauss noisecma.bbobbenchmarks.F128
- Gallagher with 101 Gaussian peaks with Gauss noise, condition up to 1000, one global rotationcma.bbobbenchmarks.BBOBNfreeFunction
- Class of the noise-free functions of BBOB.cma.bbobbenchmarks._FTemplate
- Template based on F1cma.bbobbenchmarks.F1
- Noise-free Sphere functioncma.bbobbenchmarks.F10
- Ellipsoid with monotone transformation, condition 1e6cma.bbobbenchmarks.F11
- Discus (tablet) with monotone transformation, condition 1e6cma.bbobbenchmarks.F12
- Bent cigar with asymmetric space distortion, condition 1e6cma.bbobbenchmarks.F13
- Sharp ridgecma.bbobbenchmarks.F14
- Sum of different powers, between x^2 and x^6, noise-freecma.bbobbenchmarks.F15
- Rastrigin with asymmetric non-linear distortion, "condition" 10cma.bbobbenchmarks.F16
- Weierstrass, condition 100cma.bbobbenchmarks.F17
- Schaffers F7 with asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F18
- Schaffers F7 with asymmetric non-linear transformation, condition 1000cma.bbobbenchmarks.F19
- F8F2 sum of Griewank-Rosenbrock 2-D blocks, noise-freecma.bbobbenchmarks.F2
- Separable ellipsoid with monotone transformationcma.bbobbenchmarks.F20
- Schwefel with tridiagonal variable transformationcma.bbobbenchmarks.F21
- Gallagher with 101 Gaussian peaks, condition up to 1000, one global rotation, noise-freecma.bbobbenchmarks.F22
- Gallagher with 21 Gaussian peaks, condition up to 1000, one global rotationcma.bbobbenchmarks.F23
- Katsuura functioncma.bbobbenchmarks.F24
- Lunacek bi-Rastrigin, condition 100cma.bbobbenchmarks.F3
- Rastrigin with monotone transformation separable "condition" 10cma.bbobbenchmarks.F4
- skew Rastrigin-Bueche, condition 10, skew-"condition" 100cma.bbobbenchmarks.F5
- Linear slopecma.bbobbenchmarks.F6
- Attractive sector functioncma.bbobbenchmarks.F7
- Step-ellipsoid, condition 100, noise-freecma.bbobbenchmarks.F8
- Rosenbrock noise-freecma.bbobbenchmarks.F9
- Rosenbrock, rotatedcma.bbobbenchmarks.BBOBUniformFunction
- Class of the uniform noise functions of BBOB.cma.bbobbenchmarks.F102
- Sphere with moderate uniform noisecma.bbobbenchmarks.F105
- Rosenbrock non-rotated with moderate uniform noisecma.bbobbenchmarks.F108
- Sphere with uniform noisecma.bbobbenchmarks.F111
- Rosenbrock non-rotated with uniform noisecma.bbobbenchmarks.F114
- Step-ellipsoid with uniform noise, condition 100cma.bbobbenchmarks.F117
- Ellipsoid with uniform noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks.F120
- Sum of different powers with uniform noise, between x^2 and x^6cma.bbobbenchmarks.F123
- Schaffers F7 with uniform noise, asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F126
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with uniform noisecma.bbobbenchmarks.F129
- Gallagher with 101 Gaussian peaks with uniform noise, condition up to 1000, one global rotationcma.bbobbenchmarks.BBOBUniformFunction
- Class of the uniform noise functions of BBOB.cma.bbobbenchmarks.F102
- Sphere with moderate uniform noisecma.bbobbenchmarks.F105
- Rosenbrock non-rotated with moderate uniform noisecma.bbobbenchmarks.F108
- Sphere with uniform noisecma.bbobbenchmarks.F111
- Rosenbrock non-rotated with uniform noisecma.bbobbenchmarks.F114
- Step-ellipsoid with uniform noise, condition 100cma.bbobbenchmarks.F117
- Ellipsoid with uniform noise, monotone x-transformation, condition 1e4cma.bbobbenchmarks.F120
- Sum of different powers with uniform noise, between x^2 and x^6cma.bbobbenchmarks.F123
- Schaffers F7 with uniform noise, asymmetric non-linear transformation, condition 10cma.bbobbenchmarks.F126
- F8F2 sum of Griewank-Rosenbrock 2-D blocks with uniform noisecma.bbobbenchmarks.F129
- Gallagher with 101 Gaussian peaks with uniform noise, condition up to 1000, one global rotationcma.constraints_handler.AugmentedLagrangian
- Augmented Lagrangian with adaptation of the coefficientscma.constraints_handler.BoundaryHandlerBase
- quick hack versatile base classcma.constraints_handler.BoundNone
- no boundariescma.constraints_handler.BoundPenalty
- Compute a bound penalty and update coordinate-wise penalty weights.cma.constraints_handler.BoundTransform
- Handle boundaries by a smooth, piecewise linear and quadratic transformation into the feasible domain.cma.constraints_handler.ConstrainedFitnessAL
- Construct an unconstrained objective function from constraints.cma.constraints_handler.ConstrainedSolutionsArchive
- Biobjective Pareto archive to store some Pareto optimal solutions for constrained optimization.cma.constraints_handler.CountLastSameChanges
- An array/list of successive same-sign counts.cma.constraints_handler.PopulationEvaluator
- evaluate and store f- and g-values of a population in attributes F and G.cma.evolution_strategy._StopTolXStagnation
- Provide a termination signal depending on how much a vector has changed,cma.fitness_functions._F_0
- return a "normalized" BBOB function, funID=1..24 when suite='bbob'.cma.fitness_functions.FitnessFunctions
- collection of objective functions.cma.fitness_models.LQModel
- Up to a full quadratic model using the pseudo inverse to compute the model coefficients.cma.fitness_models.ModelInjectionCallback
- inject model.xopt
and decrease sigma
if mean
is close to model.xopt
.cma.fitness_models.SurrogatePopulation
- surrogate f-values for a population.cma.fitness_models.SurrogatePopulation.EvaluationManager
- Manage incremental evaluation of a population of solutions.cma.fitness_models.Tau
- placeholder to store Kendall tau related thingscma.fitness_transformations.Function
- a declarative base class, indicating that a derived class instance "is" a (fitness/objective) function.cma.fitness_transformations.ComposedFunction
- compose an arbitrary number of functions.cma.fitness_transformations.FBoundTransform
- shortcut for ComposedFunction([f, BoundTransform(bounds).transform]), see also below.cma.fitness_transformations.FixVariables
- Insert variables with given values, thereby reducing the dimensionality of the resulting composed function.cma.fitness_transformations.IntegerMixedFunction
- DEPRECATED compose fitness function with some integer variables using np.floor
by default.cma.fitness_transformations.IntegerMixedFunction2
- compose fitness function with some integer variables using np.round
by default.cma.fitness_transformations.Rotated
- return a rotated version of a function for testing purpose.cma.fitness_transformations.ScaleCoordinates
- compose a (fitness) function with a preceding scaling and offset.cma.fitness_transformations.Shifted
- compose a function with a shift in x-space.cma.fitness_transformations.Expensify
- Add waiting time to each evaluation, to simulate "expensive" behaviorcma.fitness_transformations.GlueArguments
- deprecated, use functools.partial
or cma.fitness_transformations.partial
instead, which has the same functionality and interface.cma.fitness_transformations.NoisyFitness
- apply noise via f += rel_noise(dim) * f + abs_noise(dim)cma.fitness_transformations.SomeNaNFitness
- transform fitness_function to return sometimes NaNcma.integer_centering.IntegerCentering
- round values of int-variables that are different from the int-mean.cma.interfaces.BaseDataLogger
- abstract base class for a data logger that can be used with an OOOptimizer
.cma.logger.CMADataLogger
- data logger for class CMAEvolutionStrategy
.cma.purecma.CMAESDataLogger
- data logger for class CMAES
, that can record and plot data.cma.interfaces.EvalParallel
- allow construct with EvalParallel(fun) as eval_all:cma.interfaces.OOOptimizer
- abstract base class for an Object Oriented Optimizer interface.cma.evolution_strategy.CMAEvolutionStrategy
- CMA-ES stochastic optimizer class with ask-and-tell interface.cma.purecma.CMAES
- class for non-linear non-convex numerical minimization with CMA-ES.cma.interfaces.StatisticalModelSamplerWithZeroMeanBaseClass
- yet versatile base class to replace a sampler namely in CMAEvolutionStrategy
cma.restricted_gaussian_sampler.GaussVDSampler
- Restricted Gaussian Sampler for VD-CMA VD-CMA: Linear Time/Space Comparison-based Natural Gradient Optimization The covariance matrix is limited as C = D * (I + v*v^t) * D, where D is a diagonal, v is a vector.cma.restricted_gaussian_sampler.GaussVkDSampler
- Restricted Gaussian Sampler for VkD-CMA O(N*k^2 + k^3) Time/Space Variant of CMA-ES with C = D * (I + V * V^T) * Dcma.sampler.GaussSampler
- No class docstring; 3/3 properties, 0/3 instance variable, 3/3 methods documentedcma.sampler.GaussDiagonalSampler
- Multi-variate normal distribution with zero mean and diagonal covariance matrix.cma.sampler.GaussFullSampler
- Multi-variate normal distribution with zero mean.cma.sampler.GaussStandardConstant
- Standard Multi-variate normal distribution with zero mean.cma.logger.Logger
- log an arbitrary number of data (a data row) per "timestep".cma.logger.LoggerDummy
- use to fake a Logger
in non-verbose settingcma.optimization_tools.BestSolution
- container to keep track of the best solution seen.cma.optimization_tools.BestSolution2
- minimal tracker of a smallest f-value with variable meta-infocma.optimization_tools.EvalParallel2
- A class and context manager for parallel evaluations.cma.optimization_tools.ExponentialSmoothing
- not in use (yet)cma.optimization_tools.EvolutionPath
- not in use (yet)cma.optimization_tools.BinaryEvolutionPath
- No class docstring; 2/2 properties, 1/1 method documentedcma.optimization_tools.NoiseHandler
- Noise handling according to [Hansen et al 2009, A Method for Handling Uncertainty in Evolutionary Optimization...]cma.optimization_tools.OldEvolutionPath
- not in use (yet)cma.optimization_tools.Sections
- plot sections through an objective function.cma.options_parameters.CMAParameters
- strategy parameters like population size and learning rates.cma.options_parameters.MetaParameters
- collection of many meta parameters.cma.purecma.BestSolution
- container to keep track of the best solution seencma.purecma.CMAESParameters
- static "internal" parameter setting for CMAES
cma.purecma.ff
- versatile collection of test functions in static methodscma.restricted_gaussian_sampler.ExponentialMovingAverage
- Exponential Moving Average, Variance, and SNR (Signal-to-Noise Ratio)cma.sigma_adaptation.CMAAdaptSigmaBase
- step-size adaptation base class, implement hsig
(for stalling distribution update) functionality via an isotropic evolution path.cma.sigma_adaptation.CMAAdaptSigmaCSA
- CSA cumulative step-size adaptation AKA path length control.cma.sigma_adaptation.CMAAdaptSigmaDistanceProportional
- artificial setting of sigma for test purposes, e.g. to simulate optimal progress rates.cma.sigma_adaptation.CMAAdaptSigmaMedianImprovement
- Compares median fitness to the 27%tile fitness of the previous iteration, see Ait ElHara et al, GECCO 2013.cma.sigma_adaptation.CMAAdaptSigmaNone
- constant step-size sigmacma.sigma_adaptation.CMAAdaptSigmaTPA
- two point adaptation for step-size sigma.cma.transformations.AdaptiveDecoding
- base class for adaptive decoding.cma.transformations.DiagonalDecoding
- Diagonal linear transformation with exponential update.cma.transformations.BoxConstraintsTransformationBase
- Implements a transformation into boundaries and is used in top level boundary handling classes.cma.transformations._BoxConstraintsTransformationTemplate
- copy/paste this template to implement a new boundary handling transformationcma.transformations.BoxConstraintsLinQuadTransformation
- implement a periodic transformation that is bijective fromcma.transformations.ConstRandnShift
- ConstRandnShift()(x) adds a fixed realization of stddev * randn(len(x)) to the vector x.cma.transformations.GenoPheno
- Genotype-phenotype transformation.cma.transformations.Rotation
- implement an orthogonal linear transformation for each dimension.cma.utilities.math.MathHelperFunctions
- static convenience math helper functions, if the function name is preceded with an "a", a numpy array is returnedcma.utilities.math.UpdatingAverage
- use instead of a list
when too many values must be averagedcma.utilities.utils.BlancClass
- blanc container class to have a collection of attributes.cma.utilities.utils.DefaultSettings
- resembling somewhat types.SimpleNamespace
from Python >=3.3 but with instantiation and resembling even more the dataclass
decorator from Python >=3.7.cma.fitness_models.LQModelSettings
- Undocumentedcma.fitness_models.ModelInjectionCallbackSettings
- Undocumentedcma.fitness_models.SurrogatePopulationSettings
- Undocumentedcma.utilities.utils.ElapsedWCTime
- measure elapsed cumulative time while not paused and elapsed time since last tic.cma.utilities.utils.ShowInFolder
- callable instance to save and show figures from matplotlib
.cma.utilities.utils.TimingWrapper
- wrap a timer around a callable.tuple
cma.evolution_strategy._CMAEvolutionStrategyResult
- A results tuple from CMAEvolutionStrategy
property result.UserWarning
cma.evolution_strategy.InjectionWarning
- Injected solutions are not passed to tell as expected