class documentation
strategy parameters like population size and learning rates.
- Note:
- contrary to
CMAOptions
,CMAParameters
is not (yet) part of the "user-interface" and subject to future changes (it might become acollections.namedtuple
)
Example
>>> import cma >>> es = cma.CMAEvolutionStrategy(20 * [0.1], 1) #doctest: +ELLIPSIS (6_w,12)-aCMA-ES (mu_w=3.7,w_1=40%) in dimension 20 (seed=...) >>> >>> type(es.sp) # sp contains the strategy parameters <class 'cma.options_parameters.CMAParameters'> >>> es.sp.disp() #doctest: +ELLIPSIS {'CMA_on': True, 'N': 20, 'c1': 0.00437235..., 'c1_sep': ...0.0343279..., 'cc': 0.171767..., 'cc_sep': 0.252594..., 'cmean': array(1..., 'cmu': 0.00921656..., 'cmu_sep': ...0.0565385..., 'lam_mirr': 0, 'mu': 6, 'popsize': 12, 'weights': [0.4024029428..., 0.2533890840..., 0.1662215645..., 0.1043752252..., 0.05640347757..., 0.01720770576..., -0.05018713636..., -0.1406167894..., -0.2203813963..., -0.2917332686..., -0.3562788884..., -0.4152044225...]} >>>
See Also | |
CMAOptions , CMAEvolutionStrategy |
Method | __init__ |
Compute strategy parameters, mainly depending on dimension and population size, by calling set |
Method | disp |
Undocumented |
Method | set |
Compute strategy parameters as a function of dimension and population size |
Instance Variable | N |
Undocumented |
Instance Variable | popsize |
number of candidation solutions per iteration, AKA population size |