module documentation

various utilities not related to optimization

Class BlancClass blanc container class to have a collection of attributes.
Class DataDict a dictionary of lists (of data)
Class DefaultSettings resembling somewhat types.SimpleNamespace from Python >=3.3 but with instantiation and resembling even more the dataclass decorator from Python >=3.7.
Class DerivedDictBase for conveniently adding methods/functionality to a dictionary.
Class DictClass A class wrapped over dict to use class .-notation.
Class DictFromTagsInString read from a string or file all key-value pairs within all <python>...</python> tags and return a dict.
Class ElapsedWCTime measure elapsed cumulative time while not paused and elapsed time since last tic.
Class ExclusionListOfVectors For delayed selective mirrored sampling
Class ListOfCallables A list of callables that can be called like a single callable.
Class MoreToWrite make sure that this list does not grow unbounded
Class ShowInFolder callable instance to save and show figures from matplotlib.
Class SolutionDict dictionary with computation of an hash key.
Class TimingWrapper wrap a timer around a callable.
Function argsort return index list to get a in order, ie a[argsort(a)[i]] == sorted(a)[i], which leads to unexpected results with np.nan entries, because any comparison with np.nan is False.
Function as_vector_list a tool to handle a vector or a list of vectors in the same way, return a list of vectors and a function to revert the "list making".
Function download_file Undocumented
Function extract_targz filename must be a valid path in the tar
Function format_message put line breaks and trailing white spaces
Function format_warning Poor man's maxwarns: msg must match exactly.
Function is_ intuitive handling of variable truth value also for numpy arrays.
Function is_all return all(is_(v) for v in var_list)
Function is_any return any(is_(v) for v in var_list)
Function is_nan return np.isnan(var) or False if var is not numeric
Function is_not see is_
Function is_one return True if var == 1 or ones vector
Function is_str bytes (in Python 3) also fit the bill.
Function is_vector_list make an educated guess whether x is a list of vectors.
Function num2str returns the shortest string representation.
Function pprint nicely formated print
Function print_message Undocumented
Function print_warning Poor man's maxwarns: msg must match exactly
Function ranks return ranks of entries starting with zero based on Pythons sorted.
Function recycled return vec with the last element recycled to dim if len(vec) doesn't fail, else vec.
Function rglen return generator range(len(.)) with shortcut rglen(.)
Function set_attributes_from_dict assign, for example, all arguments given to an __init__ method to attributes in self or self.params or self.args.
Function seval Undocumented
Function zero_values_indices generate increasing index pairs (i, j) with all(diffs[i:j] == 0)
Constant PY2 Undocumented
Variable global_verbosity Undocumented
Variable warnings_counter Undocumented
def argsort(a, reverse=False):

return index list to get a in order, ie a[argsort(a)[i]] == sorted(a)[i], which leads to unexpected results with np.nan entries, because any comparison with np.nan is False.

def as_vector_list(X):

a tool to handle a vector or a list of vectors in the same way, return a list of vectors and a function to revert the "list making".

Useful when we might either have a single solution vector or a set/list/population of vectors to deal with.

Namely, this function allows to replace a slightly more verbose:

was_list = utils.is_vector_list(X)
X = X if was_list else [X]
# work work work on X, e.g.
res = [x[0] + 1 for x in X]
res = res if was_list else res[0]

with:

X, revert = utils.as_vector_list(X)
# work work work on X, e.g.
res = [x[0] + 2 for x in X]
res, ... = revert(res, ...)  # also allows to revert X, if desired

Testing:

>>> from cma.utilities import utils
>>> X = [3]  # a single vector
>>> X, revert_vlist = utils.as_vector_list(X)  # BEGIN
>>> assert X == [[3]]  # a list with one element
>>> # work work work on X as a list of vectors, e.g.
>>> res = [x[0] + 1 for x in X]
>>> X, res = revert_vlist(X, res)  # END
>>> assert res == 4
>>> assert X[0] == 3
def download_file(url, target_dir='.', target_name=None):

Undocumented

def extract_targz(tarname, filename=None, target_dir='.'):

filename must be a valid path in the tar

def format_message(msg, es=None, spaces=6):

put line breaks and trailing white spaces

def format_warning(msg, method_name=None, class_name=None, iteration=None, maxwarns=None):

Poor man's maxwarns: msg must match exactly.

Copy-paste of print_warning to get better location information than print_warning. Calling warnings.warn here makes the warning location information meaningless, hence we format only a string here. Usage could be like:

m = utils.format_warning(some_message
        ); m and warnings.warn(m)
def is_(var):

intuitive handling of variable truth value also for numpy arrays.

Return True for any non-empty container, otherwise the truth value of the scalar var.

Caveat of the most unintuitive case: [0] evaluates to True, like [0, 0].

>>> import numpy as np
>>> from cma.utilities.utils import is_
>>> is_({}) or is_(()) or is_(0) or is_(None) or is_(np.array(0))
False
>>> is_({0:0}) and is_((0,)) and is_(np.array([0]))
True
def is_all(var_list):

return all(is_(v) for v in var_list)

def is_any(var_list):

return any(is_(v) for v in var_list)

def is_nan(var):

return np.isnan(var) or False if var is not numeric

def is_not(var):

see is_

def is_one(var):

return True if var == 1 or ones vector

def is_str(var):

bytes (in Python 3) also fit the bill.

>>> from cma.utilities.utils import is_str
>>> assert is_str(b'a') * is_str('a') * is_str(u'a') * is_str(r'b')
>>> assert not is_str([1]) and not is_str(1)
def is_vector_list(x):

make an educated guess whether x is a list of vectors.

>>> from cma.utilities.utils import is_vector_list as ivl
>>> assert ivl([[0], [0]]) and not ivl([1,2,3])
def num2str(val, significant_digits=2, force_rounding=False, max_predecimal_digits=5, max_postdecimal_leading_zeros=1, remove_trailing_zeros=True, desired_length=None):

returns the shortest string representation.

Generally, display either significant_digits digits or its true value, whichever is shorter.

force_rounding shows no more than the desired number of significant digits, which means, e.g., 12345 becomes 12000.

remove_trailing_zeros removes zeros, if and only if the value is exactly.

desired_length adds digits up to the desired length.

>>> from cma.utilities import utils
>>> print([utils.num2str(val) for val in [12345, 1234.5, 123.45,
...       12.345, 1.2345, .12345, .012345, .0012345]])
['12345', '1234', '123', '12', '1.2', '0.12', '0.012', '1.2e-3']
def pprint(to_be_printed):

nicely formated print

def print_message(msg, method_name=None, class_name=None, iteration=None, verbose=None):

Undocumented

def print_warning(msg, method_name=None, class_name=None, iteration=None, verbose=None, maxwarns=None, **kwargs_for_warn):

Poor man's maxwarns: msg must match exactly

def ranks(a, reverse=False):

return ranks of entries starting with zero based on Pythons sorted.

This leads to unreasonable results with np.nan values.

def recycled(vec, dim=None, as_=None):

return vec with the last element recycled to dim if len(vec) doesn't fail, else vec.

If dim is not given, len(as_) is used if available, else a scalar is returned.

def rglen(ar):

return generator range(len(.)) with shortcut rglen(.)

def set_attributes_from_dict(self, dict_, initial_params_dict_name=None):

assign, for example, all arguments given to an __init__ method to attributes in self or self.params or self.args.

If initial_params_dict_name is given, dict_ is also copied into an attribute of self with name initial_params_dict_name:

setattr(self, initial_params_dict_name, dict_.copy())

and the self key is removed from the copied dict if present.

>>> from cma.utilities.utils import set_attributes_from_dict
>>> class C(object):
...     def __init__(self, arg1, arg2, arg3=None):
...         assert len(locals()) == 4  # arguments are locally visible
...         set_attributes_from_dict(self, locals())
>>> c = C(1, 22)
>>> assert c.arg1 == 1 and c.arg2 == 22 and c.arg3 is None
>>> assert len(c.__dict__) == 3 and not hasattr(c, 'self')

Details:

  • The entry dict_['self'] is always ignored.

  • Alternatively:

    self.args = locals().copy()
    self.args.pop('self', None)  # not strictly necessary
    

    puts all arguments into self.args: dict.

def seval(s, *args, **kwargs):

Undocumented

def zero_values_indices(diffs):

generate increasing index pairs (i, j) with all(diffs[i:j] == 0)

and diffs[j] != 0 or j == len(diffs), thereby identifying "flat spots/areas" in diffs.

Returns the respective generator type.

Not anymore used to smoothen ECDFs.

Example:

>>> from cma.utilities.utils import zero_values_indices
>>> for i, j in zero_values_indices([0, 0.1, 0, 0, 3.2, 0, 2.1]):
...     print((i, j))
(0, 1)
(2, 4)
(5, 6)
PY2 =

Undocumented

Value
(sys.version_info[0] == 2)
global_verbosity: int =

Undocumented

warnings_counter =

Undocumented