|  | 
| static pli | profile_likelihood (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, CMASolutions &cmasol, const int &k, const bool &curve=false, const int &samplesize=10, const double &fup=0.1, const double &delta=0.1, const int &maxiters=1e4) | 
|  | computes the profile likelihood in dimension k around a previously found optima 
 | 
|  | 
| static CMASolutions | optimize_vpk (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, const CMASolutions &cmasol, const std::vector< int > &k, const std::vector< double > &vk, const dVec &x0, const bool &pheno_x0=true, const bool &pheno_vk=true) | 
|  | optimizes an objective function while fixing the value of parameters in several dimensions 
 | 
|  | 
| static CMASolutions | optimize_pk (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, const CMASolutions &cmasol, const int &k, const double &vk, const dVec &x0, const bool &pheno_x0=true, const bool &pheno_vk=true) | 
|  | optimizes an objective function while fixing the value of parameters in dimension k 
 | 
|  | 
| static contour | contour_points (FitFunc &func, const int &px, const int &py, const int &npoints, const double &fup, const CMAParameters< TGenoPheno > ¶meters, CMASolutions &cmasol, const double &delta=0.1, const int &maxiters=1e4) | 
|  | computes a set of contour points around a function minima, for a deviation fup in objective function value 
 | 
|  | 
|  | 
| static void | profile_likelihood_search (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, pli &le, const CMASolutions &cmasol, const int &k, const bool &neg, const int &samplesize, const double &fup, const double &delta, const int &maxiters, const bool &curve) | 
|  | computes and search the profile likelihood points in dimension k around a previously found optima and in a given direction 
 | 
|  | 
| static void | take_linear_step (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, const int &k, const double &minfvalue, const double &fup, const double &delta, const int &n, const bool &linit, const dMat &eigenve, double &d, dVec &x) | 
|  | take a linesearch step in a given direction Note: the search takes place in geno-space 
 | 
|  | 
| static fcross | cross (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, CMASolutions &cmasol, const double &fup, const std::vector< int > &par, const std::vector< double > &pmid, const std::vector< double > &pdir, const double &ftol) | 
|  | finds crossing point 
 | 
|  | 
◆ contour_points()
computes a set of contour points around a function minima, for a deviation fup in objective function value 
- Parameters
- 
  
    | func | objective function |  | px | first dimension for contour points computation |  | py | second dimension for contour points computation |  | npoints | number of points to be computed in contour |  | fup | the function deviation for which to compute the contour |  | parameters | stochastic search parameters |  | cmasol | solution object that contains the previously found optima |  | delta | tolerance around fvalue + fup for which to compute the profile likelihood |  | maxiters | maximum number of linesearch tentatives for computing the profile likelihood |  
 
- Returns
- contour object that contains the contour points 
 
 
◆ cross()
finds crossing point 
- Parameters
- 
  
    | parameters | stochastic search parameters |  | cmasol | solution object that contains the previously foundoptima |  | fup | the function deviation for which to compute the contour |  | par | pair of dimensions to work in |  | pmid | middle point in both dimensions |  | pdir | direction in both dimensions |  | ftol | tolerance around fvalue + fup |  
 
- Returns
- crossing object 
 
 
◆ optimize_pk()
optimizes an objective function while fixing the value of parameters in dimension k 
- Parameters
- 
  
    | func | objective function |  | parameters | stochastic search parameters |  | cmasol | solution object that contains the previously found optima |  | k | dimension into which to fix the parameter (i.e. search takes place in all other dimensions) |  | vk | fixed value of parameter k |  | x0 | initial parameter values |  | pheno_x0 | whether x0 is in phenotype |  | pheno_vk | whether vk is in phenotype |  
 
- Returns
- optimization solution partial object with a single candidate that is the best candidate in full dimension 
 
 
◆ optimize_vpk()
optimizes an objective function while fixing the value of parameters in several dimensions 
- Parameters
- 
  
    | func | objective function |  | parameters | stochastic search parameters |  | cmasol | solution object that contains the previously found optima |  | k | dimensions in which to fix parameters (i.e. search takes place in all other dimensions) |  | vk | fixed values of parameters in dimensions of set k |  | x0 | initial parameter values |  | pheno_x0 | whether x0 is in phenotype |  | pheno_vk | whether vk is in phenotype |  
 
- Returns
- optimization solution partial object with a single candidate that is the best candidate in full dimension 
 
 
◆ profile_likelihood()
computes the profile likelihood in dimension k around a previously found optima 
- Parameters
- 
  
    | func | objective function |  | parameters | stochastic search parameters |  | cmasol | solution object that contains the previously found optima |  | k | dimension in which to compute profile likelihood points |  | curve | whether to store all points during search in order to build a profile likelihood curve |  | samplesize | number of steps of linesearch in every direction in dimension k |  | fup | the function deviation for which to compute the profile likelihood |  | delta | tolerance around fvalue + fup for which to compute the profile likelihood |  | maxiters | maximum number of linesearch tentatives for computing the profile likelihood |  
 
- Returns
- profile likelihood object 
- See also
- pli 
 
 
◆ profile_likelihood_search()
  
  | 
        
          | void libcmaes::errstats< TGenoPheno >::profile_likelihood_search | ( | FitFunc & | func, |  
          |  |  | const CMAParameters< TGenoPheno > & | parameters, |  
          |  |  | pli & | le, |  
          |  |  | const CMASolutions & | cmasol, |  
          |  |  | const int & | k, |  
          |  |  | const bool & | neg, |  
          |  |  | const int & | samplesize, |  
          |  |  | const double & | fup, |  
          |  |  | const double & | delta, |  
          |  |  | const int & | maxiters, |  
          |  |  | const bool & | curve |  
          |  | ) |  |  |  | staticprivate | 
 
computes and search the profile likelihood points in dimension k around a previously found optima and in a given direction 
- Parameters
- 
  
    | func | objective function |  | parameters | stochastic search parameters |  | cmasol | solution object that contains the previously found optima |  | k | dimension in which to compute profile likelihood points |  | neg | whether to go on the right (i.e. search direction) |  | curve | whether to store all points during search in order to build a profile likelihood curve |  | samplesize | number of steps of linesearch in every direction in dimension k |  | fup | the function deviation for which to compute the profile likelihood |  | delta | tolerance around fvalue + fup for which to compute the profile likelihood |  | maxiters | maximum number of linesearch tentatives for computing the profile likelihood |  
 
 
 
◆ take_linear_step()
  
  | 
        
          | void libcmaes::errstats< TGenoPheno >::take_linear_step | ( | FitFunc & | func, |  
          |  |  | const CMAParameters< TGenoPheno > & | parameters, |  
          |  |  | const int & | k, |  
          |  |  | const double & | minfvalue, |  
          |  |  | const double & | fup, |  
          |  |  | const double & | delta, |  
          |  |  | const int & | n, |  
          |  |  | const bool & | linit, |  
          |  |  | const dMat & | eigenve, |  
          |  |  | double & | d, |  
          |  |  | dVec & | x |  
          |  | ) |  |  |  | staticprivate | 
 
take a linesearch step in a given direction Note: the search takes place in geno-space 
- Parameters
- 
  
    | func | objective function |  | parameters | stochastic search parameters |  | k | dimension in which to compute profile likelihood points |  | minfvalue | current objective function min value |  | n | number of steps allowed in linesearch |  | fup | the function deviation for which to compute the profile likelihood |  | delta | tolerance around fvalue + fup for which to compute the profile likelihood |  | linit | whether this is the first linesearch call |  | eigenve | eigenvectors |  | d | step |  | x | vector on the line |  
 
 
 
The documentation for this class was generated from the following files: