|
static pli | profile_likelihood (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, CMASolutions &cmasol, const int &k, const bool &curve=false, const int &samplesize=10, const double &fup=0.1, const double &delta=0.1, const int &maxiters=1e4) |
| computes the profile likelihood in dimension k around a previously found optima
|
|
static CMASolutions | optimize_vpk (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, const CMASolutions &cmasol, const std::vector< int > &k, const std::vector< double > &vk, const dVec &x0, const bool &pheno_x0=true, const bool &pheno_vk=true) |
| optimizes an objective function while fixing the value of parameters in several dimensions
|
|
static CMASolutions | optimize_pk (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, const CMASolutions &cmasol, const int &k, const double &vk, const dVec &x0, const bool &pheno_x0=true, const bool &pheno_vk=true) |
| optimizes an objective function while fixing the value of parameters in dimension k
|
|
static contour | contour_points (FitFunc &func, const int &px, const int &py, const int &npoints, const double &fup, const CMAParameters< TGenoPheno > ¶meters, CMASolutions &cmasol, const double &delta=0.1, const int &maxiters=1e4) |
| computes a set of contour points around a function minima, for a deviation fup in objective function value
|
|
|
static void | profile_likelihood_search (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, pli &le, const CMASolutions &cmasol, const int &k, const bool &neg, const int &samplesize, const double &fup, const double &delta, const int &maxiters, const bool &curve) |
| computes and search the profile likelihood points in dimension k around a previously found optima and in a given direction
|
|
static void | take_linear_step (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, const int &k, const double &minfvalue, const double &fup, const double &delta, const int &n, const bool &linit, const dMat &eigenve, double &d, dVec &x) |
| take a linesearch step in a given direction Note: the search takes place in geno-space
|
|
static fcross | cross (FitFunc &func, const CMAParameters< TGenoPheno > ¶meters, CMASolutions &cmasol, const double &fup, const std::vector< int > &par, const std::vector< double > &pmid, const std::vector< double > &pdir, const double &ftol) |
| finds crossing point
|
|
◆ contour_points()
computes a set of contour points around a function minima, for a deviation fup in objective function value
- Parameters
-
func | objective function |
px | first dimension for contour points computation |
py | second dimension for contour points computation |
npoints | number of points to be computed in contour |
fup | the function deviation for which to compute the contour |
parameters | stochastic search parameters |
cmasol | solution object that contains the previously found optima |
delta | tolerance around fvalue + fup for which to compute the profile likelihood |
maxiters | maximum number of linesearch tentatives for computing the profile likelihood |
- Returns
- contour object that contains the contour points
◆ cross()
finds crossing point
- Parameters
-
parameters | stochastic search parameters |
cmasol | solution object that contains the previously foundoptima |
fup | the function deviation for which to compute the contour |
par | pair of dimensions to work in |
pmid | middle point in both dimensions |
pdir | direction in both dimensions |
ftol | tolerance around fvalue + fup |
- Returns
- crossing object
◆ optimize_pk()
optimizes an objective function while fixing the value of parameters in dimension k
- Parameters
-
func | objective function |
parameters | stochastic search parameters |
cmasol | solution object that contains the previously found optima |
k | dimension into which to fix the parameter (i.e. search takes place in all other dimensions) |
vk | fixed value of parameter k |
x0 | initial parameter values |
pheno_x0 | whether x0 is in phenotype |
pheno_vk | whether vk is in phenotype |
- Returns
- optimization solution partial object with a single candidate that is the best candidate in full dimension
◆ optimize_vpk()
optimizes an objective function while fixing the value of parameters in several dimensions
- Parameters
-
func | objective function |
parameters | stochastic search parameters |
cmasol | solution object that contains the previously found optima |
k | dimensions in which to fix parameters (i.e. search takes place in all other dimensions) |
vk | fixed values of parameters in dimensions of set k |
x0 | initial parameter values |
pheno_x0 | whether x0 is in phenotype |
pheno_vk | whether vk is in phenotype |
- Returns
- optimization solution partial object with a single candidate that is the best candidate in full dimension
◆ profile_likelihood()
computes the profile likelihood in dimension k around a previously found optima
- Parameters
-
func | objective function |
parameters | stochastic search parameters |
cmasol | solution object that contains the previously found optima |
k | dimension in which to compute profile likelihood points |
curve | whether to store all points during search in order to build a profile likelihood curve |
samplesize | number of steps of linesearch in every direction in dimension k |
fup | the function deviation for which to compute the profile likelihood |
delta | tolerance around fvalue + fup for which to compute the profile likelihood |
maxiters | maximum number of linesearch tentatives for computing the profile likelihood |
- Returns
- profile likelihood object
- See also
- pli
◆ profile_likelihood_search()
void libcmaes::errstats< TGenoPheno >::profile_likelihood_search |
( |
FitFunc & |
func, |
|
|
const CMAParameters< TGenoPheno > & |
parameters, |
|
|
pli & |
le, |
|
|
const CMASolutions & |
cmasol, |
|
|
const int & |
k, |
|
|
const bool & |
neg, |
|
|
const int & |
samplesize, |
|
|
const double & |
fup, |
|
|
const double & |
delta, |
|
|
const int & |
maxiters, |
|
|
const bool & |
curve |
|
) |
| |
|
staticprivate |
computes and search the profile likelihood points in dimension k around a previously found optima and in a given direction
- Parameters
-
func | objective function |
parameters | stochastic search parameters |
cmasol | solution object that contains the previously found optima |
k | dimension in which to compute profile likelihood points |
neg | whether to go on the right (i.e. search direction) |
curve | whether to store all points during search in order to build a profile likelihood curve |
samplesize | number of steps of linesearch in every direction in dimension k |
fup | the function deviation for which to compute the profile likelihood |
delta | tolerance around fvalue + fup for which to compute the profile likelihood |
maxiters | maximum number of linesearch tentatives for computing the profile likelihood |
◆ take_linear_step()
void libcmaes::errstats< TGenoPheno >::take_linear_step |
( |
FitFunc & |
func, |
|
|
const CMAParameters< TGenoPheno > & |
parameters, |
|
|
const int & |
k, |
|
|
const double & |
minfvalue, |
|
|
const double & |
fup, |
|
|
const double & |
delta, |
|
|
const int & |
n, |
|
|
const bool & |
linit, |
|
|
const dMat & |
eigenve, |
|
|
double & |
d, |
|
|
dVec & |
x |
|
) |
| |
|
staticprivate |
take a linesearch step in a given direction Note: the search takes place in geno-space
- Parameters
-
func | objective function |
parameters | stochastic search parameters |
k | dimension in which to compute profile likelihood points |
minfvalue | current objective function min value |
n | number of steps allowed in linesearch |
fup | the function deviation for which to compute the profile likelihood |
delta | tolerance around fvalue + fup for which to compute the profile likelihood |
linit | whether this is the first linesearch call |
eigenve | eigenvectors |
d | step |
x | vector on the line |
The documentation for this class was generated from the following files: