libcmaes 0.10.2
A C++11 library for stochastic optimization with CMA-ES
Loading...
Searching...
No Matches
libcmaes::Parameters< TGenoPheno > Class Template Reference

Generic class for Evolution Strategy parameters. More...

#include <libcmaes/parameters.h>

Inheritance diagram for libcmaes::Parameters< TGenoPheno >:
libcmaes::CMAParameters< GenoPheno< NoBoundStrategy > > libcmaes::CMAParameters< TGenoPheno >

Public Member Functions

 Parameters ()
 empty constructor.
 
 Parameters (const int &dim, const double *x0, const int &lambda=-1, const uint64_t &seed=0, const TGenoPheno &gp=GenoPheno< NoBoundStrategy >())
 constructor
 
void set_x0 (const double &x0)
 sets initial objective function parameter values to x0 across all dimensions
 
void set_x0 (const double *x0)
 sets initial objective function parameter values to array x0
 
void set_x0 (const dVec &x0)
 sets initial objective function parameter values from Eigen vector
 
void set_x0 (const double &x0min, const double &x0max)
 sets bounds on initial objective function parameter values. Bounds are the same across all dimensions, and initial value is sampled uniformly within these bounds.
 
void set_x0 (const double *x0min, const double *x0max)
 sets bounds on initial objective function parameter values. Initial value is sampled uniformly within these bounds.
 
void set_x0 (const std::vector< double > &x0min, const std::vector< double > &x0max)
 sets bounds on initial objective function parameter values. Initial value is sampled uniformly within these bounds.
 
void set_x0 (const dVec &x0min, const dVec &x0max)
 sets bounds on initial objective function parameter values. Initial value is sampled uniformly within these bounds.
 
dVec get_x0min () const
 returns lower bound on x0 vector
 
dVec get_x0max () const
 returns upper bound on x0 vector
 
void set_fixed_p (const int &index, const double &value)
 freezes a parameter to a given value during optimization.
 
void unset_fixed_p (const int &index)
 unfreezes a parameter.
 
void set_max_iter (const int &maxiter)
 sets the maximum number of iterations allowed for the optimization.
 
int get_max_iter () const
 returns maximum number of iterations
 
void set_max_fevals (const int &fevals)
 sets the maximum budget of objective function calls allowed for the optimization.
 
int get_max_fevals () const
 returns maximum budget of objective function calls
 
void set_ftarget (const double &val)
 sets the objective function target value when known.
 
void reset_ftarget ()
 resets the objective function target value to its inactive state.
 
double get_ftarget () const
 returns objective function target value.
 
void set_seed (const int &seed)
 sets random generator's seed, 0 is special value to generate random seed.
 
int get_seed () const
 returns random generator's seed.
 
void set_ftolerance (const double &v)
 sets function tolerance as stopping criteria for TolHistFun: monitors the difference in function value over iterations and stops optimization when below tolerance.
 
double get_ftolerance () const
 returns function tolerance
 
void set_xtolerance (const double &v)
 sets parameter tolerance as stopping criteria for TolX.
 
double get_xtolerance () const
 returns parameter tolerance
 
int lambda () const
 returns lambda, number of offsprings per generation
 
int dim () const
 returns the problem's dimension
 
void set_quiet (const bool &quiet)
 sets the quiet mode (no output from the library) for the optimization at hand
 
bool quiet () const
 returns whether the quiet mode is on.
 
void set_algo (const int &algo)
 sets the optimization algorithm.
 
int get_algo () const
 returns which algorithm is set for the optimization at hand.
 
void set_gp (const TGenoPheno &gp)
 sets the genotype/phenotype transform object.
 
TGenoPheno get_gp () const
 returns the current genotype/phenotype transform object.
 
void set_fplot (const std::string &fplot)
 sets the output filename (activates the output to file).
 
void set_full_fplot (const bool &b)
 activates / deactivates the full output (for legacy plotting).
 
std::string get_fplot () const
 returns the current output filename.
 
void set_gradient (const bool &gradient)
 activates the gradient injection scheme. If no gradient function is defined, injects a numerical gradient solution instead
 
bool get_gradient () const
 returns whether the gradient injection scheme is activated.
 
void set_edm (const bool &edm)
 activates computation of expected distance to minimum when optimization has completed
 
bool get_edm () const
 returns whether edm is activated.
 
void set_mt_feval (const bool &mt)
 activate / deactivate the parallel evaluation of objective function
 
bool get_mt_feval () const
 returns whether the parallel evaluation of objective function is activated
 
void set_max_hist (const int &m)
 sets maximum history size, allows to keep memory requirements fixed.
 
void set_maximize (const bool &maximize)
 active internal maximization scheme (simply returns -f instead of f)
 
bool get_maximize () const
 returns whether the maximization mode is enabled
 
void set_initial_fvalue (const bool &b)
 whether to compute initial objective function value (i.e. at x0)
 
void set_uh (const bool &b)
 activates / deactivates uncertainty handling scheme.
 
bool get_uh () const
 get uncertainty handling status.
 
void set_tpa (const int &b)
 activates / deactivates two-point adaptation step-size mechanism
 
int get_tpa () const
 get two-point adapation step-size mechanism status.
 

Protected Attributes

int _dim
 
int _lambda = -1
 
int _max_iter = -1
 
int _max_fevals = -1
 
bool _quiet = true
 
std::string _fplot = ""
 
bool _full_fplot = false
 
dVec _x0min
 
dVec _x0max
 
double _ftarget = -std::numeric_limits<double>::infinity()
 
double _ftolerance = 1e-12
 
double _xtol = 1e-12
 
uint64_t _seed = 0
 
int _algo = 0
 
bool _with_gradient =false
 
bool _with_edm =false
 
std::unordered_map< int, double_fixed_p
 
TGenoPheno _gp
 
bool _mt_feval = false
 
int _max_hist = -1
 
bool _maximize = false
 
bool _initial_fvalue = false
 
bool _uh = false
 
double _rlambda
 
double _epsuh = 1e-7
 
double _thetauh = 0.2
 
double _csuh = 1.0
 
double _alphathuh = 1.0
 
int _tpa = 1
 
double _tpa_csigma = 0.3
 

Static Protected Attributes

static std::map< std::string, int_algos = {{"cmaes",0},{"ipop",1},{"bipop",2},{"acmaes",3},{"aipop",4},{"abipop",5},{"sepcmaes",6},{"sepipop",7},{"sepbipop",8},{"sepacmaes",9},{"sepipop",10},{"sepbipop",11},{"vdcma",12},{"vdipopcma",13},{"vdbipopcma",14}}
 

Friends

class CMASolutions
 
template<class U , class V >
class CMAStrategy
 
template<class U , class V , class W >
class ESOStrategy
 
template<class U >
class CMAStopCriteria
 
template<class U , class V >
class IPOPCMAStrategy
 
template<class U , class V >
class BIPOPCMAStrategy
 
class CovarianceUpdate
 
class ACovarianceUpdate
 
template<class U >
class errstats
 
class VDCMAUpdate
 
class Candidate
 

Detailed Description

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
class libcmaes::Parameters< TGenoPheno >

Generic class for Evolution Strategy parameters.

Constructor & Destructor Documentation

◆ Parameters()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
libcmaes::Parameters< TGenoPheno >::Parameters ( const int dim,
const double x0,
const int lambda = -1,
const uint64_t seed = 0,
const TGenoPheno gp = GenoPheno<NoBoundStrategy>() 
)
inline

constructor

Parameters
dimproblem dimensions
x0initial search point
lambdanumber of offsprings sampled at each step
seedinitial random seed, useful for reproducing results (if unspecified, automatically generated from current time)
gpgenotype / phenotype object

Member Function Documentation

◆ dim()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::dim ( ) const
inline

returns the problem's dimension

Returns
dimensions

◆ get_algo()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::get_algo ( ) const
inline

returns which algorithm is set for the optimization at hand.

Returns
algorithm integer code

◆ get_edm()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::get_edm ( ) const
inline

returns whether edm is activated.

Returns
edm

◆ get_fplot()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
std::string libcmaes::Parameters< TGenoPheno >::get_fplot ( ) const
inline

returns the current output filename.

Returns
output filename

◆ get_ftarget()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::get_ftarget ( ) const
inline

returns objective function target value.

Returns
objective function target value

◆ get_ftolerance()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::get_ftolerance ( ) const
inline

returns function tolerance

Returns
function tolerance

◆ get_gp()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
TGenoPheno libcmaes::Parameters< TGenoPheno >::get_gp ( ) const
inline

returns the current genotype/phenotype transform object.

Returns
GenoPheno object

◆ get_gradient()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::get_gradient ( ) const
inline

returns whether the gradient injection scheme is activated.

Returns
with gradient

◆ get_max_fevals()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::get_max_fevals ( ) const
inline

returns maximum budget of objective function calls

Returns
max number of objective function evaluations

◆ get_max_iter()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::get_max_iter ( ) const
inline

returns maximum number of iterations

Returns
max number of iterations allowed

◆ get_maximize()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::get_maximize ( ) const
inline

returns whether the maximization mode is enabled

Returns
true if maximizing

◆ get_mt_feval()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::get_mt_feval ( ) const
inline

returns whether the parallel evaluation of objective function is activated

Returns
activation status

◆ get_seed()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::get_seed ( ) const
inline

returns random generator's seed.

Returns
integer seed

◆ get_tpa()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::get_tpa ( ) const
inline

get two-point adapation step-size mechanism status.

Returns
two-point adaptation status.

◆ get_uh()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::get_uh ( ) const
inline

get uncertainty handling status.

Returns
uncertainty handling status.

◆ get_x0max()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
dVec libcmaes::Parameters< TGenoPheno >::get_x0max ( ) const
inline

returns upper bound on x0 vector

Returns
upper bound on x0

◆ get_x0min()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
dVec libcmaes::Parameters< TGenoPheno >::get_x0min ( ) const
inline

returns lower bound on x0 vector

Returns
lower bound on x0

◆ get_xtolerance()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::get_xtolerance ( ) const
inline

returns parameter tolerance

Returns
parameter tolerance

◆ lambda()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::lambda ( ) const
inline

returns lambda, number of offsprings per generation

Returns
lambda

◆ quiet()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::quiet ( ) const
inline

returns whether the quiet mode is on.

Returns
quiet mode

◆ set_algo()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_algo ( const int algo)
inline

sets the optimization algorithm.

Parameters
algofrom CMAES_DEFAULT, IPOP_CMAES, BIPOP_CMAES, aCMAES, aIPOP_CMAES, aBIPOP_CMAES, sepCMAES, sepIPOP_CMAES, sepBIPOP_CMAES, sepaCMAES, sepaIPOP_CMAES, sepaBIPOP_CMAES, VD_CMAES, VD_IPOP_CMAES, VD_BIPOP_CMAES

◆ set_edm()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_edm ( const bool edm)
inline

activates computation of expected distance to minimum when optimization has completed

Parameters
edmtrue / false

◆ set_fixed_p()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_fixed_p ( const int index,
const double value 
)
inline

freezes a parameter to a given value during optimization.

Parameters
indexdimension index of the parameter to be frozen
valuefrozen value of the parameter

◆ set_fplot()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_fplot ( const std::string &  fplot)
inline

sets the output filename (activates the output to file).

Parameters
fplotfilename

◆ set_ftarget()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_ftarget ( const double val)
inline

sets the objective function target value when known.

Parameters
valobjective function target value

◆ set_ftolerance()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_ftolerance ( const double v)
inline

sets function tolerance as stopping criteria for TolHistFun: monitors the difference in function value over iterations and stops optimization when below tolerance.

Parameters
vvalue of the function tolerance.

◆ set_full_fplot()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_full_fplot ( const bool b)
inline

activates / deactivates the full output (for legacy plotting).

Parameters
bwhether to activate / deactivate

◆ set_gp()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_gp ( const TGenoPheno gp)
inline

sets the genotype/phenotype transform object.

Parameters
gpGenoPheno object

◆ set_gradient()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_gradient ( const bool gradient)
inline

activates the gradient injection scheme. If no gradient function is defined, injects a numerical gradient solution instead

Parameters
gradienttrue/false

◆ set_initial_fvalue()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_initial_fvalue ( const bool b)
inline

whether to compute initial objective function value (i.e. at x0)

Parameters
bactivates / deactivates

◆ set_max_fevals()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_max_fevals ( const int fevals)
inline

sets the maximum budget of objective function calls allowed for the optimization.

Parameters
fevalsmaximum number of objective function evaluations

◆ set_max_hist()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_max_hist ( const int m)
inline

sets maximum history size, allows to keep memory requirements fixed.

Parameters
mnumber of steps of candidate history that are kept into memory (for stopping criteria equalfunvals mostly).

◆ set_max_iter()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_max_iter ( const int maxiter)
inline

sets the maximum number of iterations allowed for the optimization.

Parameters
maxitermaximum number of allowed iterations

◆ set_maximize()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_maximize ( const bool maximize)
inline

active internal maximization scheme (simply returns -f instead of f)

Parameters
maximizewhether to maximize instead of minimizing

◆ set_mt_feval()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_mt_feval ( const bool mt)
inline

activate / deactivate the parallel evaluation of objective function

Parameters
mttrue for activated, false otherwise

◆ set_quiet()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_quiet ( const bool quiet)
inline

sets the quiet mode (no output from the library) for the optimization at hand

Parameters
quiettrue / false

◆ set_seed()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_seed ( const int seed)
inline

sets random generator's seed, 0 is special value to generate random seed.

Parameters
seedinteger seed

◆ set_tpa()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_tpa ( const int b)
inline

activates / deactivates two-point adaptation step-size mechanism

Parameters
b0: no, 1: auto, 2: yes

◆ set_uh()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_uh ( const bool b)
inline

activates / deactivates uncertainty handling scheme.

Parameters
bactivates / deactivates

◆ set_x0() [1/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const double x0)
inline

sets initial objective function parameter values to x0 across all dimensions

Parameters
x0initial value

◆ set_x0() [2/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const double x0min,
const double x0max 
)
inline

sets bounds on initial objective function parameter values. Bounds are the same across all dimensions, and initial value is sampled uniformly within these bounds.

Parameters
x0minlower bound
x0maxupper bound

◆ set_x0() [3/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const double x0)
inline

sets initial objective function parameter values to array x0

Parameters
x0array of initial parameter values

◆ set_x0() [4/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const double x0min,
const double x0max 
)
inline

sets bounds on initial objective function parameter values. Initial value is sampled uniformly within these bounds.

Parameters
x0minvector of initial lower bounds.
x0maxvector of initial upper bounds.

◆ set_x0() [5/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const dVec &  x0)
inline

sets initial objective function parameter values from Eigen vector

Parameters
x0Eigen vector of initial parameter values

◆ set_x0() [6/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const dVec &  x0min,
const dVec &  x0max 
)
inline

sets bounds on initial objective function parameter values. Initial value is sampled uniformly within these bounds.

Parameters
x0minvector of initial lower bounds.
x0maxvector of initial upper bounds.

◆ set_x0() [7/7]

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_x0 ( const std::vector< double > &  x0min,
const std::vector< double > &  x0max 
)
inline

sets bounds on initial objective function parameter values. Initial value is sampled uniformly within these bounds.

Parameters
x0minvector of initial lower bounds.
x0maxvector of initial upper bounds.

◆ set_xtolerance()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::set_xtolerance ( const double v)
inline

sets parameter tolerance as stopping criteria for TolX.

Parameters
vvalue of the parameter tolerance.

◆ unset_fixed_p()

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
void libcmaes::Parameters< TGenoPheno >::unset_fixed_p ( const int index)
inline

unfreezes a parameter.

Parameters
indexdimenion index of the parameter to unfreeze

Member Data Documentation

◆ _algo

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_algo = 0
protected

selected algorithm.

◆ _algos

template<class TGenoPheno >
std::map< std::string, int > libcmaes::Parameters< TGenoPheno >::_algos = {{"cmaes",0},{"ipop",1},{"bipop",2},{"acmaes",3},{"aipop",4},{"abipop",5},{"sepcmaes",6},{"sepipop",7},{"sepbipop",8},{"sepacmaes",9},{"sepipop",10},{"sepbipop",11},{"vdcma",12},{"vdipopcma",13},{"vdbipopcma",14}}
staticprotected

of the form { {"cmaes",0}, {"ipop",1}, ...}

◆ _alphathuh

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_alphathuh = 1.0
protected

factor of increasing the population spread.

◆ _csuh

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_csuh = 1.0
protected

learning rate for averaging the uncertainty measurement.

◆ _dim

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_dim
protected

function space dimensions.

◆ _epsuh

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_epsuh = 1e-7
protected

mutation strength for the reevaluation.

◆ _fixed_p

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
std::unordered_map<int,double> libcmaes::Parameters< TGenoPheno >::_fixed_p
protected

fixed parameters and values.

◆ _fplot

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
std::string libcmaes::Parameters< TGenoPheno >::_fplot = ""
protected

plotting file, if specified.

◆ _ftarget

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_ftarget = -std::numeric_limits<double>::infinity()
protected

optional objective function target value.

◆ _ftolerance

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_ftolerance = 1e-12
protected

tolerance of the best function values during the last 10+(30*dim/lambda) steps (TolHistFun).

◆ _full_fplot

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_full_fplot = false
protected

whether to write to file full legacy data output.

◆ _gp

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
TGenoPheno libcmaes::Parameters< TGenoPheno >::_gp
protected

genotype / phenotype object.

◆ _initial_fvalue

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_initial_fvalue = false
protected

whether to compute initial objective function value (not required).

◆ _lambda

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_lambda = -1
protected

number of offsprings.

◆ _max_fevals

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_max_fevals = -1
protected

max budget as number of function evaluations.

◆ _max_hist

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_max_hist = -1
protected

max size of the history, keeps memory requirements fixed.

◆ _max_iter

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_max_iter = -1
protected

max iterations.

◆ _maximize

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_maximize = false
protected

convenience option of maximizing -f instead of minimizing f.

◆ _mt_feval

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_mt_feval = false
protected

whether to force multithreaded (i.e. parallel) function evaluations.

◆ _quiet

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_quiet = true
protected

quiet all outputs.

◆ _rlambda

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_rlambda
protected

fraction of solutions to be reevaluated.

◆ _seed

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
uint64_t libcmaes::Parameters< TGenoPheno >::_seed = 0
protected

seed for random generator.

◆ _thetauh

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_thetauh = 0.2
protected

control parameter for the acceptance threshold for the measured rank-change value.

◆ _tpa

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
int libcmaes::Parameters< TGenoPheno >::_tpa = 1
protected

whether to activate two-point adaptation, 0: no (forced), 1: auto, 2: yes (forced)

◆ _uh

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_uh = false
protected

whether to activate uncertainty handling.

◆ _with_edm

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_with_edm =false
protected

whether to compute expected distance to minimum when optimization has completed.

◆ _with_gradient

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
bool libcmaes::Parameters< TGenoPheno >::_with_gradient =false
protected

whether to use injected gradient.

◆ _x0max

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
dVec libcmaes::Parameters< TGenoPheno >::_x0max
protected

initial mean vector max bound value for all components.

◆ _x0min

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
dVec libcmaes::Parameters< TGenoPheno >::_x0min
protected

initial mean vector min bound value for all components.

◆ _xtol

template<class TGenoPheno = GenoPheno<NoBoundStrategy>>
double libcmaes::Parameters< TGenoPheno >::_xtol = 1e-12
protected

tolerance on parameters error.


The documentation for this class was generated from the following files: