Ranking SVM algorithm with support for custom kernels.  
 More...
#include <libcmaes/surrogates/rankingsvm.hpp>
|  | 
| void | train (dMat &x, const int &niter, const dMat &covinv, const dVec &xmean) | 
|  | trains a ranker from a set of points 
 | 
|  | 
| void | predict (dVec &fit, dMat &x_test, dMat &x_train, const dMat &covinv, const dVec &xmean) | 
|  | predicts a ranking from a learnt ranker 
 | 
|  | 
| void | encode (dMat &x, const dMat &covinv, const dVec &xmean) | 
|  | encoding a set of point in a transformed space 
 | 
|  | 
| void | compute_training_kernel (dMat &x) | 
|  | pre-computation of the kernel values for every examples and coordinates 
 | 
|  | 
| void | optimize (const dMat &x, const int &niter) | 
|  | optimizes a ranker's model given a training set x 
 | 
|  | 
| double | error (dMat &x_test, dMat &x_train, const dVec &ref_fit, const dMat &covinv, const dVec &xmean) | 
|  | computes the ranker's error over a dataset 
 | 
|  | 
|  | 
| bool | _encode = false | 
|  | 
| dMat | _K | 
|  | 
| dVec | _alpha | 
|  | 
| dMat | _dKij | 
|  | 
| dMat | _C | 
|  | 
| double | _Cval = 1e6 | 
|  | 
| double | _epsilon = 1.0 | 
|  | 
| TKernel | _kernel | 
|  | 
| std::mt19937 | _rng | 
|  | 
| std::uniform_real_distribution | _udist | 
|  | 
template<class TKernel = RBFKernel>
class RankingSVM< TKernel >
Ranking SVM algorithm with support for custom kernels. 
◆ compute_training_kernel()
template<class TKernel  = RBFKernel> 
  
  | 
        
          | void RankingSVM< TKernel >::compute_training_kernel | ( | dMat & | x | ) |  |  | inline | 
 
pre-computation of the kernel values for every examples and coordinates 
- Parameters
- 
  
    | x | training set as a point per column of the matrix |  
 
 
 
◆ encode()
template<class TKernel  = RBFKernel> 
  
  | 
        
          | void RankingSVM< TKernel >::encode | ( | dMat & | x, |  
          |  |  | const dMat & | covinv, |  
          |  |  | const dVec & | xmean |  
          |  | ) |  |  |  | inline | 
 
encoding a set of point in a transformed space 
- Parameters
- 
  
    | x | the points to be transformed, one per column of the matrix |  | covinv | the inverse sqrt covariance of the points in the training set |  | training | set mean distribution if available along with covariance matrix |  
 
 
 
◆ error()
template<class TKernel  = RBFKernel> 
  
  | 
        
          | double RankingSVM< TKernel >::error | ( | dMat & | x_test, |  
          |  |  | dMat & | x_train, |  
          |  |  | const dVec & | ref_fit, |  
          |  |  | const dMat & | covinv, |  
          |  |  | const dVec & | xmean |  
          |  | ) |  |  |  | inline | 
 
computes the ranker's error over a dataset 
- Parameters
- 
  
    | x_test | testing dataset, with one point per column of the matrix |  | x_train | the initial training dataset, used by encode() if needed |  | ref_fit | the reference ranking fit against which to test the prediction |  | covinv | the inverse sqrt covariance of the points in the training set, if available and needed, encode() function. |  | training | set mean distribution if available along with covariance matrix, and needed, see encode() function |  
 
- See also
- encode 
 
 
◆ optimize()
template<class TKernel  = RBFKernel> 
  
  | 
        
          | void RankingSVM< TKernel >::optimize | ( | const dMat & | x, |  
          |  |  | const int & | niter |  
          |  | ) |  |  |  | inline | 
 
optimizes a ranker's model given a training set x 
- Parameters
- 
  
    | training | set as a set of points in column of the matrix |  | niter | the number of iterations allowed for optimization |  
 
 
 
◆ predict()
template<class TKernel  = RBFKernel> 
  
  | 
        
          | void RankingSVM< TKernel >::predict | ( | dVec & | fit, |  
          |  |  | dMat & | x_test, |  
          |  |  | dMat & | x_train, |  
          |  |  | const dMat & | covinv, |  
          |  |  | const dVec & | xmean |  
          |  | ) |  |  |  | inline | 
 
predicts a ranking from a learnt ranker 
- Parameters
- 
  
    | fit | the final ranking fitted by the ranker |  | x_test | points to be ranked, one per column of the matrix |  | x_train | the initial training set, possibly used by kernel computation |  | covinv | the inverse sqrt covariance of the points in the training set, if available and needed, encode() function. |  | training | set mean distribution if available along with covariance matrix, and needed, see encode() function |  
 
- See also
- encode 
 
 
◆ train()
template<class TKernel  = RBFKernel> 
  
  | 
        
          | void RankingSVM< TKernel >::train | ( | dMat & | x, |  
          |  |  | const int & | niter, |  
          |  |  | const dMat & | covinv, |  
          |  |  | const dVec & | xmean |  
          |  | ) |  |  |  | inline | 
 
trains a ranker from a set of points 
- Parameters
- 
  
    | x | matrix in which every column represents a point from the training set |  | covinv | the inverse sqrt covariance of the points in the training set, if available and needed, encode() function. |  | training | set mean distribution if available along with covariance matrix, and needed, see encode() function |  
 
- See also
- encode 
 
 
◆ _alpha
template<class TKernel  = RBFKernel> 
      
 
vector of Ranking SVM parameters over ranking constraints. 
 
 
◆ _C
template<class TKernel  = RBFKernel> 
      
 
constraint violation weights. 
 
 
◆ _Cval
template<class TKernel  = RBFKernel> 
      
 
constraing violation base weight value. 
 
 
◆ _encode
template<class TKernel  = RBFKernel> 
      
 
whether to use encoding from inverse sqrt covariance matrix of points. 
 
 
◆ _K
template<class TKernel  = RBFKernel> 
      
 
pre-computed matrix of kernel values for a given training set. 
 
 
◆ _kernel
template<class TKernel  = RBFKernel> 
      
 
 
The documentation for this class was generated from the following file: