|  | 
| void | set_covar (const Matrix< Scalar, Dynamic, Dynamic > &covar) | 
|  | 
| void | set_transform (const Matrix< Scalar, Dynamic, Dynamic > &transform) | 
|  | 
|  | EigenMultivariateNormal (const bool &use_cholesky=false, const uint64_t &seed=std::mt19937::default_seed) | 
|  | 
|  | EigenMultivariateNormal (const Matrix< Scalar, Dynamic, 1 > &mean, const Matrix< Scalar, Dynamic, Dynamic > &covar, const bool &use_cholesky=false, const uint64_t &seed=std::mt19937::default_seed) | 
|  | 
| void | setMean (const Matrix< Scalar, Dynamic, 1 > &mean) | 
|  | 
| void | setCovar (const Matrix< Scalar, Dynamic, Dynamic > &covar) | 
|  | 
| Matrix< Scalar, Dynamic,-1 > | samples (int nn, double factor) | 
|  | 
| Matrix< Scalar, Dynamic,-1 > | samples_ind (int nn, double factor) | 
|  | 
| Matrix< Scalar, Dynamic,-1 > | samples_ind (int nn) | 
|  | 
template<typename Scalar>
class Eigen::EigenMultivariateNormal< Scalar >
Find the eigen-decomposition of the covariance matrix and then store it for sampling from a multi-variate normal